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Abstract. We review two security proofs for the BB84 quantum key distribution protocol: Mayers’s security
proof and the more recent proof of Shor and Preskill. We focus on the basic principles and the intuition
in Mayers’s proof instead of technical details. We present a variation on Shor’s and Preskill’s proof which
is convenient for purpose of comparison. We explain the connection between these two proofs.
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1 Introduction

Many proofs of security for the BB84 quantum key distri-
bution (QKD) protocol were proposed, but two of them
have a special interest. The author’s proof established the
unconditional security of QKD much before any other
proof confirmed the same result. Moreover, as we shall
see, it still provides today one the strongest security re-
sult for QKD. The proof of Shor and Preskill is definitely
interesting because it brings a new light on the security
issue, with connection with quantum error-correction, the
notion of classical privacy amplification versus quantum
privacy amplification, etc. It is very interesting to see these
connections.

Before we discuss the details of the protocol, the proofs
and these interesting connections, let us describe the gen-
eral model for quantum protocols that we use. We use the
circuit model, which is well-known, so we will put the em-
phasis on what is specific to quantum protocols, beginning
by the transmission gates. A transmission gate which we
represent by a triangle (for example, see Fig. 1), acts on
two registers, one for the sender and another one for the
receiver. Before the transmission, only the register of the
sender contains useful information, the other one is in the
fixed state |0〉. The transmission gate swaps the content
of these two registers. Only the sender’s register is shown
before the gate and only the receiver register is shown
after the gate (but formally both registers exist all the
time). Furthermore, if the transmitted qbit is a classical-
quantum qbit (i.e., a qbit that represents a classical bit),
the transmission gate copies this qbit before the swapping.
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Fig. 1. The BB84 QKD protocol.

To copy a qbit, a CNOT is executed between this register
used as the control qbit and a fresh target qbit initially in
state |0〉. This copy operation is required to guarantee the
classical behavior of the qbit against a dishonest receiver.
It is also necessary because the sender might still need
the classical bit later: the fresh target qbit represents the
classical bit on the sender’s side. We will call such a copy
a CNOT-measurement gate, though it is just an ordinary
CNOT gate, to remind us that the gate is useful to store
a result.

Classical computation is done with CNOT and NOT
gates on classical-quantum qbits. The only gates that
connect classical-quantum qbits and ordinary qbits are
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CNOT-measurement gates that correspond to measure-
ments on the ordinary qbits, and in this case the classical-
quantum qbit is a fresh qbit initially in state |0〉. To cre-
ate a random classical bit with distribution p(0), p(1) one
creates a fresh qbit, a classical-quantum qbit, in the state√
p(0)|0〉 +

√
p(1)|1〉. (Note that non random bits corre-

spond to the case p(0) = 1 or p(0) = 0.) It should be clear
to the reader that no CNOT-measurement gate is needed
on any classical-quantum qbit until it is transmitted. The
required CNOT-measurement gate is already included as
part of the transmission gate. The details are provided in
Appendix A.

Now, we describe the circuit of the BB84 quantum key
distribution (QKD) protocol. We separated this circuit in
four phases:

(1) the quantum transmission;
(2) the test;
(3) error-correction;
(4) and key extraction (but only Bob’s key extraction is

shown in the circuit of Fig. 1).

We begin by the quantum transmission. Alice picks two
random strings x,a ∈ {0, 1}N , prepares the state |x〉 us-
ing CNOT gates, applies an Hadamar transformation for
each i with a[i] = 1, and sends the state to Bob. Next, Bob
picks a random string b ∈ {0, 1}N , applies an Hadamar
transform on the photons at each position i with b[i] = 1,
and measures the photons in the computational bases to
obtain the string y. Now, we describe the test. Bob picks
a random string R ∈ {0, 1}N . He announces the string b
and y[i] for every i with R[i] = 1. In the circuit W , Alice
computes the string T defined via T [i] = R[i]·(a[i]⊕b[i]⊕1)
and the string E defined via E[i] = (R[i]⊕1)·(a[i]⊕b[i]⊕1).
The positions i with T [i] = 1 are then used for the test.
In the circuit T , if the number of errors, i.e. positions i
with T [i] = 1 and x[i] 6= y[i] is greater than a number
d > 0 fixed in advance in the protocol, the protocol aborts
and the key is set to be the null string. Now, we describe
error-correction. In the circuit S, Alice computes r bits
of parity s[j] = ⊕i∈EF [j, i]x[i] where F is a r × |E| par-
ity check matrix for an error-correcting code C1, and the
columns of F are indexed by i ∈ E. The circuit W con-
tains a register s[j] initially in state |0〉 for every j and
one CNOT gate, with s[j] as the target qbit and x[i] as
the control qbit, for every pair of positions (j, i) for which
F [j, i] = 1. The string s is called a syndrome of the parity
check matrix F . She sends the syndrome to Bob and, in
the circuit X , Bob uses it to correct the errors in y[E] and
thus obtains x[E]. The circuit X needs only to contain a
classical computation on the syndrome s which determines
which positions must be corrected via a NOT operator. In
practice, this is not efficient, but it is enough to prove the
security of this variation on the protocol since as explained
in [3] the more efficient variations are not less secure. The
string g[E], now shared by Alice and Bob, is in the coset
C1,s = {α ∈ {0, 1}E|F � α = s} of the code C1. Finally,
for key extraction, using a circuit K, Alice and Bob com-
pute the key bits k[j] = ⊕i∈EK[j, i]x[i], where K is a
m × |E| matrix picked uniformly at random. (Only the
key extraction executed by Bob is shown in Fig. 1).

H H

R
&

a
&

b
&

Alice Bob Alice

E
&

T
&

W

Bob

Quantum Transmission Test QEC

0
&

T

K k
&

Key
Extraction

][5y
&

x
&

M

Not in R

ts
&

&

,

ST

XZ

tsQ &
&

,∈

tsQ &
&

,∈

Fig. 2. The BB84-CSS QKD protocol.

Now, let us consider Shor and Preskill’s proof. To sim-
plify the analysis we consider a variation on the proof. We
will reduce the security of the BB84 protocol to another
protocol which we call the BB84-CSS protocol. The cir-
cuit for this protocol is shown in Figure 2. The protocol is
a variation on what Shor and Preskill [2] call the Modified
Lo-Chau protocol. It has the advantage of being closer to
the BB84 protocol. There are only a few differences be-
tween the BB84-CSS and the BB84 protocols which we
now describe. Stars are used in Figure 2 to show where
these differences occur. First, in the BB84-CSS protocol
we replace each classical-quantum random bit x[i] by an
ordinary quantum qbit in the state (|0〉+ |1〉)/

√
2. As ex-

plained before, this would only affect the behavior of an
eventual transmission gate (but there is none in this case).
Second, in the BB84-CSS protocol, Bob only measures the
tested photons (i.e. at positions i with R[i] = 1) and ob-
tain y[R]. The other photons are not measured. Third, in
the BB84-CSS protocol, in addition and after the compu-
tation of the syndrome s, Alice computes an extra syn-
drome t for phase flip error-correction. We will discuss
how t is defined later. Fourth, Bob uses the syndrome t to
do phase flip error-correction after bit flip error-correction.

The proof proceeds in two steps. First we show that,
if the BB84-CSS protocol is secure, the BB84 protocol is
also secure. This is the reduction. Second, we show that
the BB84-CSS protocol is secure. We now proceed with the
first step. The concept of reduction is standard in cryp-
tography. Here we use the most simple kind of reduction.
We show that for any attack against the BB84 protocol,
there exists a corresponding attack that is as successful
against the BB84-CSS protocol. Clearly, if we next show
that there is no successful attack against the BB84-CSS
protocol, then we have that there is no successful attack
against the BB84 protocol. Note that Eve needs only two
circuits (not shown in Fig. 1): one during the quantum
transmission, and a final one on the extra registers on
her side after she learned the bases. The attack on the
BB84-CSS protocol is simply that Eve uses the exact same
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two circuits as against the BB84 protocol, and ignores the
extra syndrome t.

So, for Eve’s circuits fixed, we want to show that Eve
is not less successful in the BB84-CSS protocol than in the
BB84 protocol. We will pass from the BB84 protocol to the
BB84-CSS protocol in three steps such that at each step
Eve has no less information in the new protocol than in the
previous one. At each step, we add or remove an operation
which could equivalently be executed at the end of the
protocol after Eve’s final circuit, and therefore executing
or not this operation makes no difference: the operation
does not influence the behavior of the reminder of the
protocol.

First, we replace the classical-quantum qbits x[i] by
ordinary quantum qbit. This only means that eventual
transmission gates will not CNOT-measure them anymore
before the transmission, but these bits are not transmit-
ted anyway (see Fig. 1), and so it makes no difference at
all. Second, we take out Bob’s measurements on the pho-
tons which are not tested. These measurements are like
CNOT-measurement gates in which the measured pho-
tons are the control qbits. Later on, these photons are
only used again in the circuit X for bit flip error-correction
and the circuit K for key extraction (see Fig. 1). The cir-
cuit X needs only to use NOT gates on these photons.
Clearly, these CNOT-measurement operations commute
with these NOT operations modulo a final NOT oper-
ation on their target qbits which are not used anyway
(see Appendix A). Similarly, these CNOT-measurement
operations commute with circuit K for key extraction be-
cause in both cases the photons are only used as con-
trol qbits. Every thing else that occur later in the proto-
col is done on different registers, and thus commute with
these CNOT-measurement operations. So these CNOT-
measurement operations can be equivalently executed af-
ter every thing that occur later in the protocol. Third, we
add the computation and announcement of t by Alice to-
gether with phase flip error-correction by Bob. Phase flip
error-correction is the last step before key extraction and
Eve’s final measurement. It will not influence Eve’s final
measurement because Eve does it on a different system,
but we need to check that it does not influence key extrac-
tion. This is not hard to check. In principle, phase flip er-
rors can be corrected using the conditional phase flip (also
denoted σ3) operator which is the NOT operator in the
Hadamar basis (see lemma 1). The syndrome t only indi-
cates on which photons to execute this conditional phase
shift operator. In practice, this is not efficient, but who
cares since this is just part of a proof. Key extraction
is done in the computational basis. Clearly, conditional
phase shift operators do not influence the computation of
the key by Bob and they could be done later in the pro-
tocol (or not at all). Now, we need to check that the com-
putation and the announcement of the syndrome t can
also be moved at the very end of the protocol. We will
see later (see lemma 1) that the computation of the syn-
drome t (by Alice) commutes with the computation of the
key k (by Alice). Every thing else that occurs later in the
protocol is done on a different system and ignores t (see

Fig. 1 and recall that Eve’s ignore the extra syndrome t).
So, the computation-announcement of t commutes with
every operation that occurs later in the current protocol.
This concludes the proof.

Clearly, in view of the fact that we minimized as much
as possible the differences between the BB84-CSS proto-
col and the BB84 protocol, the above reduction is as sim-
ple as it can be. In the original proof of Shor and Preskill,
they used the modified Lo-Chau protocol which is interest-
ing for an historical reason, but unfortunately the match-
ing with the BB84 protocol is not as good as with the
BB84-CSS protocol.

Now, we proceed with the second step, the proof that
the BB84-CSS is secure. In the BB84 case, the strings of
the coset C1,s are so far away from one to another (in
the Hamming distance) that, if the number of errors in
Bob’s string is small, Bob can recover Alice’s string. If
we think of these classical strings as classical distribution
over the coset C1,s, we can say that, after error-correction,
Alice and Bob respective distribution of strings are per-
fectly correlated. In the BB84-CSS case, the situation is
similar, except that instead of only a classical correlation,
they obtain a perfect entanglement between their respec-
tive quantum coset Qs,t, a subspace of the state space of
the n photons in E which we will defined later. (By “in E”
we mean at positions i with E[i] = 1.) So, after quantum
error correction and decoding, Alice and Bob share almost
perfect Φ+ pairs. Therefore, the extracted key is private,
even if Eve receives from Alice the additional syndrome
for phase flip error correction. This is the basic idea of the
BB84-CSS security proof. This is not the most innovative
part of the proof of Shor and Preskill because in a way it
is only the statement that quantum error-correction works
in a particular model of errors, the one that is forced by
the test. In fact, this part of the proof was essentially
skipped in the original paper of Shor and Preskill [2] and
was done later for the perfect apparatus case in [5]. We
will not cover this part of the proof except for a brief dis-
cussion in connection with Mayers’s (the author’s) proof.

However, it is interesting to understand the concepts
of quantum error-correction in a new context. Besides,
we also need to provide two lemma that are used in the
proof of the reduction. We start by considering the no-
tion of classical privacy amplification over classical error-
correction (used in Mayers’s original proof and hidden in
Shor’s and Preskill’s proof), and then we go into the re-
lated concept of CSS codes and entanglement purification.

Classical privacy amplification together with error cor-
rection can be done with a (r +m) × n parity check ma-
trix G for a linear code C2. We assume that all rows of G
are linearly independent in Fn2 . (Here Fn2 is the n dimen-
sional vector space over the finite field F2 = {0, 1} with
standard multiplication and addition modulo 2.) The r
first rows at the bottom of G form a parity check matrix
H1 for a larger code C1, which corresponds to the lin-
ear code used in the BB84 protocol. We have {0} ⊂ C2 ⊂
C1 ⊂ Fn2 . The syndromeH1 ·x = s is used to correct errors
in the string x. Here the dot “·” represents the standard
matrix multiplication (with a sum modulo 2). The top m



164 The European Physical Journal D

rows form a matrix K used to extract the key which is
given by k = K · x, as in the BB84 protocol.

The associated CSS code Q = Q(C1, C2) is a subspace
of C2n protected against errors in a small number of qbits.
The quantum states

Ψ(x, z) =
1

|C2|1/2
∑
w∈C2

(−1)w·z|x+ w〉 (1)

are called “string-states” and will be used to define the
CSS code. Let H2 be any (n − m − r) × n parity check
matrix for C⊥2 , the dual of C2. The following proposition
is helpful to understand CSS quantum error-correcting
code. It is not hard to prove using techniques described
in [3], so we only state it.

Proposition 1. If we rewrite the string-states Ψ(x, z)
in the new basis states |w〉H (obtained from the old basis
states |w〉 by an Hadamar transform H on all n qbits),
we get:

Ψ(x, z) =
(−1)z·x

|C⊥2 |1/2
∑

w∈C⊥2

(−1)w·x|z + w〉H . (2)

To our knowledge this proposition was never used before.
Using proposition 1, we now prove the following lemma.

Lemma 1. The three circuits which respectively computes
s, k and t pairwise commute, and the string-states are in
one-to-one correspondence with the 2n triplets (s,k, t).

Remark. In accordance with this lemma, whenever it
is convenient, the string-states will be denoted Ψ(s,k, t)
instead of Ψ(x, z).

Proof of lemma 1. For the first part of the lemma, it
will be sufficient to show that each of these three circuits
defines an orthogonal measurement which is diagonal in
the basis of string-states. For the circuits S and K which
classically compute s and k, the argument is simply that,
because C2 is the linear code with parity check matrix G,
every basis state |x + w〉 in formula (1) encodes the same
syndrome-key pair (s,k) = G � (z + w). So, when these
circuits act on any given string-state, they only return the
encoded s and k, and leave invariant the string-state. The
collapse operation associated with the outcome (s,k) is
the projection on the span of the string-states that en-
code s and k. For the circuit T , the argument is similar
except that we use formula (2) which uses the new basis
{|w〉H}. (We did not mention it before, but t is computed
in the same manner as s but using the new basis {|w〉H}.)
The second part of the lemma is easily obtained from the
first part using the fact that there are 2n different string-
states. This concludes the proof.

We will try to understand quantum error-correction
with the help of the previous lemma. However, note that
what is going on in error-correction is not entirely obvious
even in the classical case. For example, it is interesting to
note that one only needs to know the syndrome s of the
received string, not the entire string, to determine which

positions must be flipped back. The situation is very much
the same in the quantum case, except that the classical
code (which is a set of strings) is replaced by a CSS code
(which is a subspace generated by a set of string-states).
As we will see, the string-states of a CSS code are far away
(in the Hamming distance) for both x and z.

We recall from classical error correcting code that
Cs = {x ∈ Fn2 | H1 · x = s} is called a coset of the
code associated with H1, and the particular coset with
s = 0 is the linear code itself. By analogy, the “quantum
coset” Qs,t = Qs,t(C1, C2) of a CSS quantum code with
syndromes s and t is defined via

Qs,t = Span{Ψ(x, z) |H1 · x = sH2 · z = t} (3)

and the CSS code Q itself is the particular case where
s = 0 and t = 0. As mentioned in [2], the same CSS code
Q is obtained if we use (C⊥2 , C

⊥
1 ) instead of (C1, C2), but

the basis of string-states are different. We will not use this
alternative representation.

Note that the only degree of freedom left in the string-
states of a coset Qs,t is the outcome of a measurement of
the key k (using the circuit K). So s and t specify one
of the 2r+(n−m−r) cosets and each state |k〉 is encoded in
the state Ψ(s,k, t) in this coset. The string-states in the
CSS code Q0,0 are called the codewords of the CSS codes.

For entanglement purification of ρ ≈ (φ+)⊗n, Alice
measures the syndromes s = H1 · x and t = H2 · z and
announces them to Bob. If we had exactly ρ = (φ+)⊗n,
the residual state would be the exact encoding

2−m
∑

k∈{0,1}m
Ψ(s,k, t)⊗ Ψ(s,k, t) ∈ Qs,t ⊗Qs,t

of 2−m
∑

k∈{0,1}m |k〉 ⊗ |k〉. As we will see, if the number
of bit flips and phase flips errors is small, Alice and Bob
can recover this exact encoding using quantum-error cor-
rection on Bob’s side, and eventually they can decode it
on their respective side to obtain k.

Hereafter, we only consider quantum error-correction
on Bob’s side. For the intuition, we briefly review the clas-
sical case. A non zero syndrome s corresponds to an er-
ror u such that H � u = s. The initial string is x with
H�x = 0, and the final string is x⊕u. Note that the error
transformation is only a posteriori defined. It is defined as
the translation that sends the actual initial state to the
actual final state. It is not necessarily the actual error
process. The actual error process could define a different
translation for every initial string. In fact, usually the er-
ror mechanism is probabilistic and there is no fixed trans-
lation associated with an initial state. If we have a good
error-correcting code, for most error transformation u in
the error model (in probabilistic sense), there is no other
transformation u′ also in this error model that defines the
same syndrome s. In other words, except with a small
probability, the syndrome should tell you what is the way
to undo the error. For example, if the minimal distance
of the code is d and the error transformations u are guar-
antee to have weight smaller than bd/2c, then for every
syndrome s there is at most one error-transformation u
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Fig. 3. The error model Vs code and cosets.

in the error model that has this syndrome. For simplicity,
we will analyse this non probabilistic case. In Figure 3,
the dots are codewords and the stars are strings in the
coset Cs. By definition, the coset Cs is obtained via a
translation x 7→ x⊕u on the linear code where H�u = s.
Error transformations (i.e. translations) on the codewords
correspond to vectors which are represented by arrows in
Figure 3. If we restrict the error transformation to the er-
ror model, only one such error transformation can map a
codeword into a string in Cs because the strings in this
coset are far away one to the other. This error transfor-
mation corresponds to the unique vector u with weight
smaller than d/2 in the coset Cs. So, the syndrome s
uniquely determines this transformation, and that is suffi-
cient for error-correction. The actual physical error mech-
anism might generate a different transformation for each
initial string, and the syndrome does not tell us what is
this actual error process, but we don’t care about that.

Now, we analyse the quantum case. We recall that the
standard Pauli matrices σ1, σ3 and σ2 correspond respec-
tively to bit flip error (the NOT operation), phase flip er-
ror (conditional phase shift) and both. For an error string
e ∈ {0, 1}n, and an error operator σ on single qbit (e.g.
σ = σ1 or σ = σ3) we define σe = ⊗ni=1σ

e[i]. In the quan-
tum case, we do not have the distinction between a posteri-
ori defined and actual error mechanism because the actual
state could be a superposition of all possible string-states
in the code. In exchange, we have that the most general
transformation, a generalised collapse operation A, has to
be linear. Every generalised collapse operation A on the
state of the n photons can be expressed as a linear combi-
nation of basic error operations on n photons of the form
σeX

1 σeZ
3 where eX , eZ ∈ {0, 1}n. Of course, we must add a

condition on the possible error transformation A. For per-
fect error-correction, a natural condition is that, for every
basic error operation σeX

1 σeZ
3 of the linear combination,

the weights of eX and eZ are both below bd/2c where d
is the minimal distance of the code. As we will discuss

later this condition is more restrictive than necessary for
perfect error-correction, but for simplicity we will adopt
it. As previously discussed, a condition of this kind should
be forced with high precision by the test, but we will not
cover this part of the proof except for a brief discussion
later in the paper. However, we would like to mention in
parenthesis that the test, which is executed in the com-
putational basis |x[T ]〉 in T , is used to bound both the
σ1 errors in the bases {|x[E]〉} and the σ3 errors in the
basis {|z[E]〉H} in E.

As in the classical case, if we know which basic error
transformation σeX

1 σeZ
3 needs to be undone, then it is easy

to undo it. If the initial state is

Ψ =
∑

k∈{0,1}m
αkΨ(0,k,0) ∈ Q0,0,

the final state is

AΨ =
∑
k

∑
eX ,eZ

αkβeX ,eZσ
eX
1 σeZ

3 Ψ(0,k,0)

where αk and βeX ,eZ are possibly complex coefficients.
Note that the states σeX

1 σeZ
3 Ψ(0,k,0) belong to cosets of

the code Q0,0. If we measure the pair of syndromes (s, t),
we project on the components σeX

1 σeZ
3 Ψ(0,k,0) of AΨ

such that

σeX
1 σeZ

3 Ψ(0,k,0) ∈ Qs,t.

However, by definition of the coset Qs,t, if this property
(which determines the non vanishing components) is true
for one k, it must be true for all k ∈ {0, 1}m. So, the
above property is independent of k and can be rewritten
σeX

1 σeZ
3 Ψ(0,0) = Ψ(eX , eZ) ∈ Qs,t which is the same as

H1�eX = s and H2�eZ = t. Furthermore, in our simple
error model, we also have that the weight of both eX and
eZ is smaller than d. These two properties are simply the
conjunction of the corresponding classical condition for
bit flip error correction and phase flip error correction
separately. Because the string-states in Qs,t are far away
in the Hamming distance of both x and z, at most one
error transformation σeX

1 σeZ
3 has these two properties.

So, after we have obtained the pair of syndromes (s, t),
we know that we need to correct this particular error
transformation. The above discussion can be summarized
in the following lemma.

Lemma 2. Given that the minimal distance of the
linear codes defined by the parity check matrix H1 and
H2 of a CSS code is d in both cases. Given that the
possible collapse operations A are linear combinations
of error transformations σeX

1 σeZ
3 where the weights of

eX and eZ are both smaller than bd/2c. Bit flip (phase
flip) error-correction can be done via the transformation
σeX

1 (σeZ
3 ) in which the error string eX (eZ) is the

unique string of weight smaller than bd/2c that respects
H1 � eX = s (H2 � eZ = t).
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We will go into more details via an example of a
CSS code. Let us consider the parity check matrix

G =

1 1 1 1 1 1 1

1 0 0 1 1 1 0
0 1 0 0 1 1 1
0 0 1 1 1 0 1

for a linear code C2. Here the top matrix is K = 1111111,
a single row, so the key is a single bit. The parity check
matrix H1 for the larger code C1 consists of the three rows
at the bottom. We have that C1 is a [7, 4, 3] code:

C1 =

{0000000 0001011 0010110 0011101
0100111 0101100 0110001 0111010
1000101 1001110 1010011 1011000
1100010 1101001 1110100 1111111}

and C2 = {x ∈ C1 |K · x = 0}, i.e., C2 contains all the
codewords that we underlined in C1. In this particular
case, it turns out that C2 = C⊥1 or equivalently C⊥2 = C1.
So we take H2 = H1. Let 0 = 0000000 and 1 = 1111111.
The CSS code Q0,0 contains the two codewords

Ψ(0,0) =
1

2
√

2
× (|0000000〉+ |0011101〉+ |0100111〉+ |0111010〉

+ |1001110〉+ |1010011〉+ |1101001〉+ |1110100〉)

and

Ψ(1,0) =
1

2
√

2
× (|1111111〉+ |1100010〉+ |1011000〉+ |1000101〉

+ |0110001〉+ |0101100〉+ |0010110〉+ |0001011〉) ·

Consider the new basis states |w〉H which are obtained
from the old basis states |w〉 by an Hadamar transform
H on all n qbits. To illustrate formula (2), we note that
it allows us to rewrite the string-states Ψ(x, z) in the new
basis states |w〉H :

Ψ(1,0) =
1
4

× (|000000〉H + |0011101〉H + |0100111〉H + |0111010〉H
+ |1001110〉H + |1010011〉H + |1101001〉H + |1110100〉H
− |0001011〉H − |0010110〉H − |0101100〉H − |0110001〉H
−|1000101〉H−|1011000〉H−|1100010〉H−|1111111〉H) ·

The error model describes the error transformations A
which can possibly occur before error-correction. For error
correction, first Bob finds out the syndromes H1 · x = s
and H2 · z = t. The final state after the measurement of
the syndromes s and t necessarily belongs to Qs, t. Many
transformations es,t can map a state initially in Q0,0 into
a state of Qs,t, but there should exist only one such a

transformation modulo a global phase that is consistent
with the error model. This must be a property of the error
model whatever this model is. The key point is that s
and t must be enough information to find out this unique
transformation.

Let σêiX , X ∈ 1, 2, 3, denote the application of σX at
position i. In the C1 = [7, 4, 3] example, we assume that
the error model implies that, for every given (s, t), the
valid error transformations have the form σêi1 σ

êj
3 , where i

and j are not necessarily distinct. As mentioned before,
linear combinations of these basic transformations are
also allowed. Again, such an error-model and its prop-
erties needs to be forced by the test. We do not cover
this part of the security proof. Now, consider the initial
codeword Ψ(0001011, 0000000) ∈ Q0,0. Alice announces
the initial syndromes s = 000 and t = 000. Assume that
the final syndromes obtained by Bob are s = 011 and
t = 101. Because the minimal distance of both C1 and
C⊥2 is 3, it can be verified that the only valid transfor-
mation e011,101 that can reach a state in Q011,101 from
a state in Q000,000 corresponds to the transformation
σ

(4)
1 σ

(7)
3 = I ⊗ I ⊗ I ⊗ σ1 ⊗ I ⊗ I ⊗ σ3. Thus we know that

the final codeword is Ψ(0000011, 0000001) ∈ Q011,101, but
Bob can undo the error without knowing this final code-
word. Also, as we mentioned before, the syndrome s alone
tell us at which position i to execute σ1. Also, we see in
this example that whether or not we undo σ3, the phase
flip error, will not affect the final key.

Now, we would like to discuss some connections
between classical and quantum privacy amplification.
For classical privacy amplification over classical error-
correction, the minimal weight of C⊥2 −C⊥1 must be large,
not the minimal distance of C⊥2 [3]. Consider the toy ex-
ample

G =

1 1 1 1 1

1 0 0 0 0
0 1 0 0 0

.

Here K = [11111] and

C⊥2 − C⊥1 = {11111, 01111, 10111, 00111}

with minimal weight dZ = 3. Eve can learn up to
dZ − 1 = 2 bits at given positions in a string v and she
will learn nothing about K · v, even if she has the parity
bits from the two rows at the bottom. This suggests that
in general the minimal weight of C⊥2 − C⊥1 must be large
for privacy. In general, Eve can obtain more complicated
kinds of information and general proof for privacy ampli-
fication are difficult. New techniques were used in [3,6].
In particular, it was realised and proven that we obtain a
large minimal weight for C⊥2 −C⊥1 if we pick the matrix K
at random over any parity check matrix H1, thus allowing
the use of an efficient linear code C1 for error-correction.
Similarly, for classical error-correction (followed by pri-
vacy implication), it is not the minimal distance of C1

which must be large, but the minimal weight of C1 − C2.
This is because errors in C2 do not affect the final key.
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It is interesting to note that the corresponding concept
is also true for quantum error correction: a more detailed
analysis [2] shows that in a CSS code it is sufficient that
the minimal weight of C1 − C2 and C⊥2 − C⊥1 are large.

We remark that we can obtain an efficiently decod-
able code C1 and another code C2 ⊂ C1 with a large
minimal weight for C1 − C2 (as required for bit flip er-
ror correction) together with a large minimal weight for
C⊥2 − C⊥1 [3]. However, we do not know how to have
C⊥2 efficiently decodable at the same time. Nevertheless,
Shor’s and Preskill’s reduction is still practical because
the code C⊥2 for phase flip error-correction is only used to
prove privacy in the BB84-CSS protocol; it is not needed
in the BB84 protocol [2]. Another remark is only Bob does
error correction in the BB84 protocol and thus also in the
BB84-CSS protocol, but in practice there will be errors
on both sides. This is why Shor and Preskill must assume
that the Φ+ source is perfect. Errors occur on both sides,
but since the Φ+ pairs are perfect, errors on Alice’s side
are equivalent to errors on Bob’s side, and thus we can
assume that there is no error on Alice’s side.

Now, let us analyse in more details the security of the
BB84 protocol in the context of imperfect apparatus. As
for many other security proofs, Shor and Preskill’s proof
assumes that there is a known upper bound on the level of
imperfection in the apparatus used. The version of their
proof in [2] assumes that the apparatus are perfect, that
is, this upper bound is in fact zero. However, whether the
upper bound is zero or strictly positive, in both cases, this
bounded error assumption is problematic. For example, let
us assume that we obtain the system from some manufac-
turer. The manufacturer is perhaps not malicious, but he
might be negligent. How do you know for sure that the
bound is respected? This is the untrusted apparatus is-
sue. Mayers’s original proof [3] has the advantage to have
addressed the untrusted measuring apparatus issue. Later,
an approach to deal with an untrusted source in the con-
text of untrusted measuring apparatus was described by
Mayers and Yao [8].

Consider formula (3) in Shor’s and Preskill paper:
F ≡ 〈(Φ+)⊗m|ρ′|(Φ+)⊗m〉 ≥ Tr(Π ρ). In this formula,
ρ is a state of n pairs of photons that are used to en-
code m < n pairs of photons. The density operator ρ′ is
the state of these m pairs after quantum error-correction
and decoding. The measurement operators Π correspond
to a test on the number of phase and bit flip errors in ρ.
The above inequality states that Tr(Π ρ) ≥ 1 − ε, a con-
straint that is forced by the test on the number of phase
and bit flip errors, is sufficient to obtain a correspond-
ing level of fidelity F ≥ 1 − ε between the decoded state
ρ′ and m perfect Bell states (Φ+)⊗m. However, to obtain
this inequality (via quantum error correction) we needs a
constraint on ρ, not on Πρ. Therefore, my guess is that
to work out the imperfect case we will need some upper
bound on the imperfection level in Π so that the value
of Tr(Π ρ) means something on ρ. The problem is that
such an upper bound is not available if the manufacturer
is negligent – it is hard to put an upper bound at this
level.

How Mayers’s proof addresses this issue? The comple-
mentary principle states that, if a measurement operator
provides a lot of information about Alice’s bits when Al-
ice uses the conjugate bases (i.e. swaps the diagonal and
rectilinear bases), the same measurement provides little
information when Alice uses the original bases. Accord-
ingly, Mayers’s proof considers a variation on the protocol
where Bob uses the conjugate bases for the untested bits so
that, as required, he would obtain a lot of information had
Alice used these conjugate bases. Eve and Bob together
execute a refinement of this measurement that necessarily
provides even more information. So, in accordance with
the complementary principle, Eve and Bob together, and
thus Eve alone, have little information when Alice use the
original bases. This provides a bound on Eve’s informa-
tion, but on a key that exists only on Alice’s side. (Bob
uses the wrong bases.) Fortunately, Bob keeps his untested
bits private, so this key and Eve’s information about it are
the same as in the original protocol, and that’s sufficient
in the proof. The untrusted apparatus issue is taken care
of because the proof depends only on the fact that Bob
obtains a lot of information when Alice uses the conjugate
bases. This is forced by the test in the protocol, whatever
is Bob’s apparatus.

To understand Mayers’s proof in more details, one es-
sentially needs to understand the complementary princi-
ple and how the proof uses it. We already explained in the
above discussion how the complementary principle is used.
Here, we explain how to obtain it. There are many pos-
sible variations on the complementary principle. Mayers’s
proof includes the proof of two possible variations on this
principle, one for an exact (i.e., ideal) case and one for the
inexact (i.e. realistic) case. These two variations fit well
with the classical privacy amplification technique used in
the BB84 protocol. In the remainder of this document, we
will only focus on the exact case.

We recall that in the complementary principle we need
to quantify how much information is provided by Bob’s
measurement operator when Alice uses the flipped bases.
Bob must also use these flipped bases because otherwise
he will not have a lot of information. However, here this is
not the main point since we will assume that the test was
successful in verifying that Bob’s measurement provides
a lot of information. The complementary principle says
that, because this measurement provides a lot of infor-
mation when Alice uses the flipped bases, then this same
measurement provide little information when Alice uses
the original bases. The fact that Bob’s measurement pro-
vides a lot of information when Alice uses the flipped bases
is expressed in Mayers’s proof in the so-called small sphere
property S. The strong small sphere property is the exact
case. As explained before, this property must be given in
terms of a fictive preparation where Alice and Bob use
flipped bases.

Some notations. The strings of flipped bases on Alice’s
and Bob’s side are denoted ã and b̃, respectively. Since,
these strings are actually string of bits, here we refer to
a convention that the rectilinear basis and the diagonal
basis are respectively associated with the bits 0 and 1.
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So a[i] = 1 refers to the diagonal basis and a[i] = 0
refers to the rectilinear basis. For every α ∈ {0, 1}E and
θ ∈ {0, 1}E, we denote by Ψ(α, θ) the state that encodes
the string of bits α into the photons in E using the string
of bases θ. We recall that by “in E” or “on E” we mean
in or on the set of photons at positions i with E[i] = 1,
but sometimes E directly refers to the positions i with
E[i] = 1. For any α, we denote by |α〉 = Ψ(α, b̃[E]) the
state that encode the string α in the photons in E using
the flipped bases b̃[E] = ã[E].

Definition 1. Consider any state φ̃ in the state space
for the photons in E. We say that φ̃ has the strong small
sphere property with radius d′′ if whenever α ∈ {0, 1}E
does not lie strictly inside the sphere of radius d′′ around
y[E] (in the Hamming distance), we have that 〈φ̃|α〉 = 0.

Remark. In accordance with the basic intuition that
is explained above, we want to show that Bob receives a
lot of information when Alice uses the string of conjugate
bases ã[E] = b̃[E] on E. The strong small sphere prop-
erty (strong ssp) says that Bob has a lot of information
because it puts an upper bound on dE(x, y), the number
of errors in Bob’s string y restricted at E. The strong ssp
says that, given that Alice’s initial state is encoded in the
string of conjugate bases b̃, the outcome associated with
|φ̃〉〈φ̃| ensure that the number of errors is strictly smaller
than d′′, being implicit here that |φ̃〉〈φ̃| is a measurement
operator that returns the outcome y[E].

2 An example

The goal here is to illustrate the strong small sphere prop-
erty. This example should not be considered as an illus-
tration of the proof, only the strong small sphere property
is illustrated. We consider a simple kind of attacks where
Eve-Bob announced the string of bases b̃[E] = ++ . . .++
on E at the beginning, but Eve-Bob cheated and ac-
tually measured in the flipped string of bases b̃∗[E] =
××+ . . .+ +: the bases for the two first positions i with
E[i] = 1 have been flipped with respect to the bases b̃[E].
(Eve-Bob can obtain such a situation with a significant
probability by flipping few bases at random.) Let us as-
sume that the outcome on E is y[E] = 00 . . .0. We will see
that the state Ψ(y[E], b̃∗[E]) has the strong small sphere
property with radius 3. The associated “bra” operation is

〈Ψ(y[E], b̃∗[E]) | =
1/2(〈000 . . .0|+ 〈010 . . .0|+ 〈100 . . . 0|+ 〈110 . . .0|) ·

There are only 4 strings α ∈ {0, 1}E on E such that

|〈Ψ(y[E], b̃∗[E]) |α〉| 6= 0.

These are the 4 strings that label the 4 components
of 〈Ψ(y[E], b̃∗[E]) |. These four strings lie strictly in-
side a sphere of radius 3 around y[E]. So, the state

Ψ(y[E], b̃∗[E]) has the strong small sphere property with
radius 3. This concludes the example.

The strong small sphere property is too strong to be
a property of the actual collapse operation executed by
Eve-Bob on the photons in E. This property cannot be
obtained, not even probabilistically. It corresponds to the
ideal requirement that the test on E passes with proba-
bility exactly 1 given that this collapse operation occured.
Nevertheless, this ideal situation is sufficient to explain
the basic mechanism of the proof. The next lemma says
that if a state |φ〉 has the strong small sphere property
then the associated collapse operation provides no infor-
mation at all about the final key. This lemma combines
together privacy amplification and the complementary
principle in an intricated manner. We already explained
the lemma in connection with the complementary princi-
ple. Privacy amplification enters into the picture because
we directly consider the density matrix associated with
the final key. We emphasis that the approach in which one
first obtains a bound on some kind of information (such
as the collision information) about Alice’s raw key x[E]
and then separately use standard privacy amplification
techniques [4] to obtain a much smaller bound on the
final key didn’t succeed thus far in quantum cryptography.

Lemma 3. For every key k ∈ {0, 1}m and syndrome
s ∈ {0, 1}r, consider the density matrix

ρ̃s,k
def= |Ck,s|−1

∑
α∈Ck,s

|Ψ(α, a[E])〉〈Ψ(α, a[E])|

where Ck,s is the set of string α ∈ {0, 1}D consistent with
the key k and the syndrome s, i.e., for which F •x[E] = s
and K • x[E] = k. Consider any state φ̃ on the state
space for the photons at positions i with E[i] = 1. If φ̃ has
the strong small sphere property with radius d′′ ≤ dZ/2,
where dZ was defined before as the minimal weight of
C⊥2 − C⊥1 , then 〈φ̃ | ρ̃k,s | φ̃〉 is independent of k.

Note that an outcome that is equally likely to occur
for every possible key k provides no information about the
key. Therefore, lemma 2 is really an exact version of the
complementary principle. We now prove this lemma.

Proof of lemma 3. We first do the case where r = 0 (no
error-correction),m = 1 and the one row binary matrix K
is [11 . . .11]. In this case, we have dZ = nE. Also, one can
easily compute the density matrices ρ̃0 and ρ̃1 respectively
associated with Alice’s preparation for the photons in E
when the key is k = 0 and k = 1. We recall that, for every
α ∈ {0, 1}E, we defined |α〉 def= Ψ(α, b̃[E]). One obtains
that the matrix [∆ρ̃]{|α〉} of ∆ρ̃ def= ρ̃0 − ρ̃1 in Bob’s basis

{|α〉} def= {|α〉 |α ∈ {0, 1}E} is

[∆ρ̃]{|α〉} = 21−nE


0 1
1 0

.
.

0 1
1 0
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in which there are 0 everywhere except when indicated
otherwise in the two by two blocks that are located on
the diagonal. The indices α ∈ {0, 1}E for the rows in
the matrix are ordered in such a way that any two in-
dices α1, α2 ∈ {0, 1}E which are at maximal Hamming
distance nE are always adjacent, and the same ordering
is used for the indices α′ ∈ {0, 1}E for the columns. The
entries in the matrix are 〈α|∆ρ̃|α′〉, where α, α′ ∈ {0, 1}E.
We have that 〈α|∆ρ̃|α′〉 = 0 unless d(α, α′) ≥ dZ = nE .
The matrix [∆ρ̃]{|α〉} = [∆ρ̃](nE)

{|α〉} can be obtained using
the recurrence formula

∆ρ̃(n) = (1/2)∆ρ̃(n−1) ⊗ (ρ̃(1)
0 − ρ̃

(1)
1 )

which can be obtained with some algebra using the for-
mula

ρ̃
(n)
b = (1/2)[ρ̃(n−1)

0 ⊗ ρ̃(1)
b + ρ̃

(n−1)
1 ⊗ ρ̃(1)

b̄
].

Now, we want to show that the probability of v is the
same given both density matrices. So, we want to show
that 〈φ̃ |∆ρ̃ |φ̃〉 = 0. We have that

〈φ̃ |∆ρ | φ̃〉 =
∑
α,α′

〈φ̃ |α〉〈α |∆ρ̃ |α′〉〈α′ | φ̃〉·

We show in two cases that every term in the sum is 0.
Case 1: if d(α, α′) ≥ dZ = nE then, because φ̃ has the
strong small sphere property with radius dZ/2, either
〈φ̃ |α〉 = 0 or 〈α′ | φ̃〉 = 0. Case 2: if d(α, α′) < nE , then
〈α|∆ρ|α′〉 = 0. This concludes the proof for the simple
case where m = 1 and r = 0.

Now we do the proof for the general case where
m, r > 0. The matrix [ρ̃s,k]α,α′ is given by

(ρ̂s,k)α,α′ =

2−nE
{

0 if (α ⊕ α′) 6∈ C⊥[G]
(−1)λ(α⊕α′)•(s,k) otherwise

where

G =
(
F
K

)
,

C⊥[G] is the code that contains linear combinations of
rows of G and λ is the coordinate function that when
evaluated on any string α ∈ C⊥[G] returns the string co-
ordinate λ(α) such that λ(α)•G = α. The computation is
provided in Appendix B. By definition of dZ if the weight
of (α⊕α′), which is the same as d(α, α′), is strictly smaller
than dZ , then λ(α⊕α′) vanishes in its K-section. We ob-
tain that, for (α, α′) fixed, the sign of the entry [ρ̃s,k]α,α′
depends only on s. Therefore, d(α, α′) < dZ implies that
[∆ρ̃]α,α′ = [ρ̃s,k]α,α′ − [ρ̃s,k′ ]α,α′ vanishes. The remainder
of the proof is identical the proof in the simple case, and
this can be easily checked by the reader. This concludes
the proof.
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Fig. 4. Delaying a CNOT-measurement gate.

3 Conclusion

We have presented the essential idea of both Shor and
Preskill’s proof and Mayers’s original proof. We have seen
the interesting connections between these two proofs and
classical privacy amplification. We have seen that Mayers’s
proof, despite the fact that it was proposed years before
any other proof, still provides one of the strongest security
result that is available for QKD.

Appendix A: Transmission gates

Here we want to show that the CNOT-measurement gate
for a classical-quantum bit that is used in a transmission
gate is sufficient: there is no need to CNOT-measure a
classical-quantum bit before it is transmitted. Consider
n + 1 qbits at positions 0, 1, . . . , n where positions 1
to n are for classical-quantum bits. First, we show that
a CNOT-measurement gate with target qbit at position
0 and control qbit at position i ∈ {1, . . . , n} commute
with any circuit of one or more CNOT or NOT gates in
positions 1 to n (0 excluded) modulo extra CNOT gates
also using position 0 as target qbit and possibly followed
by a NOT gate at position 0. The proof can be done by
induction on the number of gates, but here we will only
prove the case where the circuit contains only one gate.
The proof is by inspection of three cases illustrated in
Figure 4:

– the circuit contains a NOT gate on the control qbit.
In this case we simply have to add an extra NOT gate
at position 0;

– the circuit contain a CNOT gate with control qbit at
position i and target qbit at position j > 0, j 6= i. In
this case, the two CNOT gates commute with no extra
gate required;
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– the circuit contain a CNOT gate with target qbit at
position i and control qbit at position j > 0, j 6= i.
In this case, one must add an extra CNOT gate with
control qbit at position j and target qbit at position 0.

Therefore, we can delay the original CNOT-
measurement gate until after the circuit if we follow it by
these other CNOT and NOT gates. The new circuit ex-
ecute the exact same unitary transformation. Since these
CNOT and NOT gates are executed after the circuit they
do not influence its classical computation. It may be im-
portant to execute them if their control qbit is transmit-
ted, but this is taken care by the transmission gate.

Appendix B: The density matrices ρ̃

Consider a linear code C[G] ⊆ {0, 1}n of dimension q and
a coset C[G, x] of this code (G is the parity check matrix
and x is the syndrome). Here, we analyse the general sit-
uation where a string g̃ uniformly chosen at random in
the coset C[G, x] is sent from Alice to Bob using a fixed
string of bases a ∈ {+,×}n. We want to find the matrix
representation of the density operator

ρ̃x = 2−q
∑

g̃∈C[G,x]

Ψ̃(g̃, a) Ψ̃(g̃, a)†

in the basis {Ψ̃(α, b)|α ∈ {0, 1}n} where b = ā. To apply
this result to this paper, one must use

G =
(
F
K

)
,

x = (s, k) and q = n − r − m but the computation for
the general case is the same. A key ingredient is that if
a string g belongs to a code C = C[G] for which G is
the parity check matrix then we have g = λ • G⊥ where
λ ∈ {0, 1}dimC and G⊥ is a parity check matrix for the
dual code. We will apply this principle twice, once with
the code and once with its dual. We have

ρ̃x =
1
|C|

∑
g∈C[G,x]

|w〉〈w|·

We will use the fact that in the conjugate basis we have

|w〉 = 2−n
∑

t∈{0,1}n
(−1)g•t|t〉·

We obtain

ρ̃x =
2−n

|C|
∑

t,t′,g∈C
(−1)g•(t⊕t

′)|t〉〈t′|·

Let g0 be any string in the coset C[G, x]. We will use the
fact that the sum over g ∈ C[G, x] can be replaced by
a sum over γ ∈ {0, 1}dimC with the change of variable
g 7→ (γ •G⊥)⊕ g0. We get

ρ̃x =
2−n

|C|
∑

t,t′,γ∈{0,1}dimC

(−1)(g0⊕γ•G⊥)•(t⊕t′)|t〉〈t′|·

After simple algebra, we get

ρ̃x =
2−n

|C|
∑
t,t′

(−1)g0•(t⊕t
′)

∑
γ∈{0,1}dimC

(−1)γ•G
⊥•(t⊕t′)

︸ ︷︷ ︸
k(t,t′)

|t〉〈t′|·

Now, consider the coefficient k(t, t′). This coefficient van-
ishes if G⊥ • (t ⊕ t′) 6= 0, that is, if (t ⊕ t′) 6∈ C⊥. If
(t⊕ t′) ∈ C⊥, we have k(t, t′) = |C|. We obtain

ρ̃x = 2−n
∑

t,t′|(t⊕t′)∈C⊥
(−1)g0•(t⊕t

′)|t〉〈t′|

where we used g0 • (t ⊕ t′) = (t ⊕ t′) • g0. Now, we will
use the fact that (t⊕ t′) is a string in C⊥. We obtain that
t ⊕ t′ = λ(t ⊕ t′) • G where λ(t ⊕ t′) is the unique string
with this property. The exponent (t ⊕ t′) • g0 becomes
λ(t ⊕ t′) • G • g0 = λ(t ⊕ t′) • x, by definition of g0. We
obtain

ρ̃x = 2−n
∑

t,t′|(t⊕t′)∈C⊥
(−1)λ(t⊕t′)•x|t〉〈t′|

or equivalently

〈t|ρ̃x|t′〉 = 2−n
{

(−1)λ(t⊕t′)•x if (t⊕ t′) ∈ C⊥
0 otherwise

·
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